Salt-induced oligomerization of partially folded intermediates of equinatoxin II.
نویسندگان
چکیده
Equinatoxin II (EqTxII) is a cytolytic, water-soluble protein which binds to and forms cation-selective pores in lipid membranes. To characterize the native and denatured states of EqTxII and to elucidate the biological role of its oligomers, we have studied salt-dependent heat-induced conformational transitions of EqTxII. To this end, we have employed a variety of experimental techniques, including differential scanning calorimetry, circular dichroism and light absorption spectroscopy, ultrasonic velocimetry, electron microscopy, PAGE, and a hemolytic activity assay. This experimental combination has enabled us to monitor and structurally and thermodynamically characterize temperature-induced conformational transitions and oligomerization of EqTxII at different concentrations of NaCl. At pH 3.0 and 25 degrees C, EqTxII retains its native conformation and remains hemolytically active over a broad range of NaCl concentrations. However, an increase in the salt concentration results in a diminution of the thermal stability of EqTxII. Specifically, the calorimetrically determined denaturation temperature, T(d), and enthalpy, DeltaH(cal), of the toxin decrease with an increase in the salt concentration. Our CD data suggest that the heat-induced denatured state of EqTxII lacks rigid tertiary structure while exhibiting well-defined secondary structure. The amount of the induced, non-native secondary structure of EqTxII depends on the solution ionic strength, temperature, time of incubation at an elevated temperature, and protein concentration. Our combined results suggest that, in the presence of salt, an increase in temperature results in formation of the partially unfolded state of the toxin that oligomerizes and forms biologically inactive, water-soluble aggregates.
منابع مشابه
Acid- and base-induced conformational transitions of equinatoxin II.
We have investigated the acid- and base-induced conformational transitions of equinatoxin II (EqTxII), a pore-forming protein, by a combination of CD-spectroscopy, ultrasonic velocimetry, high precision densimetry, viscometry, gel electrophoresis, and hemolytic activity assays. Between pH 7 and 2, EqTxII does not exhibit any significant structural changes. Below pH 2, EqTxII undergoes a native-...
متن کاملAssociation-induced folding of globular proteins.
It has generally been assumed that the aggregation of partially folded intermediates during protein refolding results in the termination of further protein folding. We show here, however, that under some conditions the association of partially folded intermediates can induce additional structure leading to soluble aggregates with many native-like properties. The amount of secondary structure in...
متن کاملOligomerization and pore formation by equinatoxin II inhibit endocytosis and lead to plasma membrane reorganization.
Pore-forming toxins have evolved to induce membrane injury by formation of pores in the target cell that alter ion homeostasis and lead to cell death. Many pore-forming toxins use cholesterol, sphingolipids, or other raft components as receptors. However, the role of plasma membrane organization for toxin action is not well understood. In this study, we have investigated cellular dynamics durin...
متن کاملIs Congo red an amyloid-specific dye?
Congo red (CR) binding, monitored by characteristic yellow-green birefringence under crossed polarization has been used as a diagnostic test for the presence of amyloid in tissue sections for several decades. This assay is also widely used for the characterization of in vitro amyloid fibrils. In order to probe the structural specificity of Congo red binding to amyloid fibrils we have used an in...
متن کاملThe role of tryptophan in structural and functional properties of equinatoxin II.
A pore-forming, cytolytic and lethal polypeptide, equinatoxin II, from the sea anemone Actinia equina, was subjected to oxidation with N-bromosuccinimide to study the role of five present tryptophan residues in structure-function relationships. In the folded toxin molecule, 1-2 tryptophan residues were readily susceptible to oxidation with N-bromosuccinimide, whereas modification of a single re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 43 29 شماره
صفحات -
تاریخ انتشار 2004